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Thermodynamics and Lattice Vibrations of Minerals: 
1. Mineral Heat Capacities and Their Relationships 

to Simple Lattice Vibrational Models 

SUSAN WERNER KIEFFER 1 

Department of Earth and Space Sciences, University of California, Los Angeles, California 90024 

This is the first of a series of five papers in which the thermodynamic properties of minerals are interpreted 
in terms of lattice vibrational spectra. In this paper, measured heat capacities for minerals are examined in 
terms of the Debye theory of lattice vibrations, and it is demonstrated that heat capacities of silicates show 
large deviations from the behavior expected from Debye theory. The underlying assumptions of Debye 
theory are critically reviewed, and it is shown that the observed thermodynamic deviations in minerals 
probably arise from four effects not included in the Debye model: anisotropy of elastic parameters, 
dispersion of acoustic waves toward Brillouin zone boundaries, optic vibrations in excess of the Debye 
spectrum at low frequencies, and optic vibrations at frequencies much greater than the Debye cutoff 
frequency predicted by acoustic measurements. Each of the four effects influences the heat capacity in a 
particular temperature range: anisotropy, dispersion and low-frequency optic vibrations are important at 
low temperatures (0øK to • 100øK); high-frequency vibrations are important at higher temperatures. It is 
necessary to include all four effects in a generalized lattice vibrational model for minerals; such a model is 
developed in papers 2-5 of this series. The minerals included in this study are halite, periclase, brucite, 
corundum, spinel, quartz, cri.•tobalite, silica glass, coesite, stishovite, rutile, albite, microcline, jadeitc, 
diopside, enstatite, tremolite, talc, muscovite, forsteritc, zircon, kyanite, andalusite, sillimanite, pyrope, 
grossular, andradite, spessartine, almandine and calcite. 
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1. INTRODUCTION 

Many geologic questions which are asked about properties 
of the earth and processes within it cannot be answered be- 
cause of our lack of knowledge of properties of minerals. In 
some cases it is possible to measure the relevant properties on 
appropriate samples; for example, seismic velocities of crustal 
minerals and rocks can be measured by ultrasonic techniques, 
compressions of high-pressure phases can be measured by 
shock wave techniques, and phase equilibria at low pressure 
and temperature can be studied in laboratory experiments. In 
other cases, however, it is not possible to do the appropriate 
experiments, because, for example, pressures and temperatures 
of interest may not be attainable in the laboratory, samples 
may not be available, or equilibrium may not be attainable. 
Under such circumstances, geologists are forced to rely on 
empirical extrapolations of meager data or on theoretical 
methods. 
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Our current theories of the vibrational and thermodynamic 
behavior of minerals have been partially obtained by applying 
concepts developed for simple substances in the fields of phys- 
ics, chemistry, and materials science. Frequently, the theories 
were originally developed to expiain properties of substances 
whose characteristics differ sharply from those of minerals, 
e.g., for metals or for ionic solids. When they are applied to 
minerals, these theories may become artificial and, frequently, 
cumbersome because bf the complexity of mineral structures. 

Such has been the case with most attempts to apply lattice 
dynamics calculations to minerals. In the lattice dynamics 
approach, assumptions about the atomic force constants are 
made, and from these assumptions, elastic constants and their 
derivatives are calculated. The vibrational spectrum, which is 
required in order to calculate the thermodynamic functions, 
can be obtained from such models. In principle, the formalism 
of lattice dynamics provides great power to calculate mineral 
properties and to interrelate elastic constant, spectral, ther- 
modynamic, and phase equilibrium data. In practice, the cal- 
culations are time-consuming, are complex beyond easy com- 
prehension, and generally do not give accurate representation 
of the thermodynamic functions. The failure of the method for 
most substances of geologic interest arises mainly from our 
lack of adequately detailed knowledge of atomic interactions 
and from the inherent complexity of minerals, which are poly- 
atomic and of low symmetry. 

In this series of papers a new approach is proposed to the 
problem of relating data on elastic constants, spectroscopic 
properties, thermodynamic functions, and phase equilibria. 
This approach has its roots in lattice dynamics theory but 
lacks its rigor and elegance. In exchange, it offers relative 
simplicity, utility, and, it is hoped, comprehensibility for prob- 
lems of mineral thermodynamics. 

The thermodynamic functions of a crystal (e.g., Helmholtz 
free energy F, internal energy E, heat capacity Cv, and entropy 
$) can, in the harmonic approximation. be expressed as aver- 
ages over the frequency spectrum g(w); these functions are 
given by the expressions shown in Table 1. The motivating 
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TABLE 1. Harmonic Expressions for the Thermodynamic Functions 

Thermodynamic 
Function 

Relation to the 
Partition Function 

Z for a System 
of Independent 

Oscillators 
Expression in Terms of Exponential 

Functions 
Expression in Terms of Hyperbolic 

Functions 

E (internal E=kT •glnZ foø•Ll•co •fo ø•L l•co dco energy) 0T E = -3nNnl• + e n•/nr - 1 g(w)dw E = -3nNn• + wcoth 2•g(w ) 2• 

Cv (heat Cv - k oalnZ engine ( ••• ••( •2• • • dw capacity) • o(1/T)a Cv = k (•/nr _ 1)• g(w) dw Cv = k cscha 2• g(w) 2• 
S(entropy) S = • + k In Z S = • e n•/nr - 1 g(w)dw S = k coth 2k• 

- k In (1 - e-n•/nr)g(w)dw - In 2 sinh g(w) dw 2• 

F(Helmholtz F = -kTln Z 
free energy) 

F= 3nNal• + kT fo ø• In(1 - e-n•/nV)g(co) dco F = 3nNnl• + kTfo ø• In 2 sinh /•co g(co) 2•r 

The expressions in terms of exponential functions are after Reif[1965, chapter 10], and those in terms of hyperbolic functions are after 
Maradudin et al. [1963, p. 46]. The partition function Z is given by In Z = 3kTnNnl• - fo o•L In (1 - e-nø•/•V)g(co) dco. In the expression for E in 
terms of exponential functions, -3nNnl• = Vo + • •__2NA,• /•COe, where Vo is the potential energy of the equilibrium configuration of oscilla- 
tors; the summation term is the zero-point energy. In the equations of the table, n is the number of atoms in the chemical formula; Nn is 
Avogadro's number;/• is the Planck constant h divided by 2•-; k is the Boltzmann constant; T is the temperature in degrees Kelvin; co is the fre- 
quency; co•. is the maximum lattice vibrational frequency; and g(co) dw is the fraction of frequencies in the interval (co, o• + &0). Note that the 
normalization to 3Nan degrees of freedom is contained in the expression for g(o•) rather than in the partition function except for the.zero-point 
energy term. 

force for proceeding with a less rigorous model than the com- 
plete lattice dynamics formulation for lattice vibrations of 
minerals is the well-known fact that because the thermody- 
namic functions are averages over the frequency spectrum, 
they are insensitive to details of the spectrum. 

The Debye model of the lattice vibrational spectrum, which 
gives a g(c0) that is a quadratic function of frequency, has been 
used commonly in geologic studies to predict or extrapolate 
the heat capacity or entropy of minerals and to relate their 
thermal properties to acoustic velocities. In this series of pa- 
pers it is demonstrated that for most minerals a Debye model 
is inadequate to specify thermal properties which depend on 
lattice vibrations. The spectrum proposed as an alternative to 
the Debye spectrum is somewhat more complicated but is, 
nevertheless, still reasonably convenient. It is able to account 
much better than the Debye model for the variation of the 
thermodynamic properties of complex substances over a wide 
range of temperatures. In this paper, Debye theory is reviewed 
to provide a basis for the model introduced, measured heat 
capacities of simple and complex substances are compared, 
causes of deviations from Debye behavior are investigated, 
and simple quantitative models for one-dimensional lattices 
are discussed to provide a basis for the model introduced in 
paper 3 [Kieffer, 1979c]. 

2. TEMPERATURE DEPENDENCE OF THE HEAT CaPaCITY 
OF COMPLEX SUBSTANCES 

Debye Model 

Of the many analytic models proposed for frequency distri- 
butions of lattice vibrations, one of the most enduring, because 
of its simplicity and universal applicability to simple sub- 
stances, was developed by Debye [1912]. Debye developed the 
theory of distribution of frequencies in a solid by considering 
the solid as an isotropic elastic continuum. At the time of 
Debye's original paper on this subject the theory of reciprocal 

lattices and zones was not known, although Born had obtained 
some of the main results in a simultaneous alternative formu- 

lation of a specific heat theory [Born and yon Karman, 1912, 
1913]. The derivation presented below gives recognition to the 
underlying crystal lattice, as treated in the lattice dynamical 
theory of Born and yon Karman [1912], and thus emphasizes 
the approximations made to actual lattice structure [Brillouin, 
1953]. For further details, see the work of Maradudin et al. 
[19631. 

Consider a primitive Bravais lattice with basis vectors a•, a2, 
a8 forming the edges of the cells (symbols are defined in the 
notation list). A corresponding reciprocal lattice is defined by 
the reciprocal basis vectors 

b• = 2•rao. x aa , 
I al' ao. x 

bO.= 2•raa x al la•.'a, x all (1) 

ba = 2•ral x 
la•'al x a•.l 

(In crystallographic literature the factor 2•r is omitted from the 
above expressions. However, it is convenient to include this 
factor in treatments of the interaction of waves with periodic 
lattices, as will be seen in section 3.) 

The wave vectors for lattice vibrational waves are conve- 

niently represented in reciprocal space in the form [e.g., Kittel, 
1968, p. 531 

K(•) = •,b'+ •,b 2 + •b • (2) 

(where the r/• are integers and K is a reciprocal lattice vector). 
The unit cell of the direct lattice, with volume V,., may be 
represented in the reciprocal lattice by a unit cell whose vol- 
ume Ve is inversely proportional to the volume of a unit cell of 
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the direct lattice, VR = (2•r)a/VL. The reciprocal unit cell is 
called the Brillouin zone. Its boundaries are hsually chosen 
symmetrically about the origin of the reciprocal lattice, K = 0. 
The Brillouin zone is identical to the usual reciprocal cell 
adopted by crystallographers except that the factor of 2•- is 
included, the origin is taken at the center of the cell rather than 
at a corner, and the wave vector K is a coordinate rather than 
a reciprocal length. 

Let us now consider the propagation of elastic waves 
through a lattice. It is well known [e.g., Brillouin, 1953] that all 
elastic vibrations of a lattice propagate as waves of the form 

rs(x, t) = A g sin (K.x - •0t + b) 

where rs(x, t) is the displacement of the medium at the point x 
and time t, •0 is the frequency, g is the direction in which the 
displacements occur, K is the wave vector, A is an amplitude, 
and b is a phase factor. In general, the frequency •0 of lattice 
vibrations is a function of the direction and magnitude of the 
wave vector K. The wave velocity (the group velocity) v is 
given by 

Il- ,0/lKI (3) 

The relation between c0 and K (or v = w/2a- and y = K/2•-) is 
called the dispersion relation. The Debye theory assumes that 
all modes of vibration are acoustic and all have the same wave 

velocity v (Figure la). These waves are dispersionless; i.e., 
phase velocities and group velocites are the same. 

The Debye theory also assumes that the vibrational states of 
the crystal correspond to wave vectors K whose tips are uni- 
formly distributed in reciprocal space. Because the available 
volume in reciprocal space increases proportionally to 
[K:IdK, the density of vibrational states, f(K), has the form 

f(K) dK = 4•-K: dK. d 

where d is the density (assumed uniform) of wave vectors in 
reciprocal space. The density of states g(w), expressed in terms 
of the vibrational frequency c0 = vK, can therefore be written 

g(w) dw = f[K(w)] •ww dw = aw: dw (4) 
where a is a constant that depends on the elastic wave veloci- 
ties. Here g(w) dw is the number of vibrational states lying 
between c0 and c0 + dw. The parabolic form of g(w) is illus- 
trated in Figure lb. The simple parabolic form of the vibra- 
tional spectrum in (4) is the central feature of the Debye 
model, and it is valid for any crystal in the limit as c0 -• 0 (long- 
wavelength phonor•s). 

The value of a in (4) is determined by the density of vibra- 
tional states in reciprocal space. All normal modes of the 

Dispersion relation Frequency distribution 
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Fig. 1. (a) Schematic dispersion relation for Debye solid (arbitrary 
units). (b) Schematic spectral density g(co) for a Debye solid. 

crystal are represented by wave vectors within one reciprocal 
cell because only those vibrational modes are physically dis- 
tinct. A crystal consisting of one mole of the substance of 
interest contains nNA atoms, where n is the number of atoms in 
the chemical formula and NA is Avogadro's number, and it has 
3nNa normal modes of vibration. As was just stated, the wave 
vectors corresponding to these normal modes span one recip- 
rocal cell. The molar density d of vibrational states in recipro- 
cal space is thus 

d = 3nNa/VR = 3nNaVL/(2a-) •= 3nZV/(2•-) • 

where V is the molar volume of the crystal and Z is the number 
of formula units in the unit cell (V• = VZ/Na). When it is 
transformed to the frequency representation by (4), this den- 
sity corresponds to a value of a given by 

a = 3nZV/2•:v• • (5) 

As was previously stated, this assumes that all acoustic 
waves have the same speed vu and hence that the crystal is 
elastically isotropic. In reality, the compressional (P) and 
shear (S) waves have separate speeds, so that for an isotropic 
crystal there are two separate spectral contributions of the type 
(4), one with av = nZV/2•vv • and the other with as = 2nZV/ 
2•vs •. For simplicity, in Debye theory this more complicated 
spectrum is often replaced by a single spectrum with an aver- 
aged value of a: 

3nZV _ nZV (1 +3) (6) a = 2•:v•a 2•: v? 

Most crystals are elastically anisotropic, so that for each wave 
propagation direction K there are three, rather than two, 
distinct wave velocities, v•(K), v:(K), and va(K). In a simple 
Debye' theory the separate spectral contributions from these 
different waves are averaged by using a mean velocity 

v• a - 4• v? v: • • d9 (7) 
where the integration is over all directions of K, d9 being an 
increment of solid angle about the origin of the Brillouin zone. 
To accomplish in a simple way the averaging represented by 
(7), it has become common practice in geophysics to use the 
Voigt-Reuss-Hill (VRH) average velocity for v• in (7) [see 
O. L. Anderson, 1963]. 

In the Debye model, the Brillouin zone is simplified by 
•placing the actual zone with a sphere of the same volume in 
reciprocal space, centered at the origin of the reciprocal lattice. 
Its radius Kmax = ]Kmax ] is thus given by 

} •Kmax a = (2•)a/V• (8) 

Corresponding to the maximum wave vector Kmax is a maxi- 
mum frequency wo given by the dispersion relation wo = 
ouKmax. In the simplest form, using (5), a sharp cutoff fre- 
quency wo is given by 

•D=OMgmax OM(a•gNA) i/a (9HNA) 1/a = = (9) • a 

(N is the number of atoms in one mole of the crystal; N = 
nNa.) This cutoff frequency is the quantity normally used to 
characterize the Debye spectrum of a crystal, and it is usually 
given in terms of the Debye temperature 0o, defined as follows: 

0o = 

where g is Planck's constant h divided by 2r and k is the 
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Boltzmann constant. The Debye temperature calculated from 
(9) and (10) on the basis of acoustic velocities is called the 
elastic Debye temperature to distinguish it from Debye tem- 
peratures estimated on the basis of specific heat data or by 
other means. From (5), (9), and (10) it follows that the Debye 
temperature can be calculated from 

0• = •( 6•r•'Nn ) ZV vs• (11) 
The specific heat of a solid is obtained by considering the 

heat capacity contribution Cv E of the individual lattice vibra- 
tional oscillators ('Einstein oscillators') of frequency co: 

CvE = 3 exp(•co/kT)- 1 -- g •-• 
where 

( •co ) (t•co/kT) ø' exp (•co/kT) 8 •-• = [exp (I/Ico/kT)- 11 •' 

(12a) 

(12b) 

8(l•co/kT) is defined as the Einstein (heat capacity) function 
and T is the absolute temperature. The molar heat capacity 
is a summation of Einstein functions for all of the oscillators: 

Cv = ,,o g(co) g •-• dco (13) 

For a Debye solid, with g(co) given by (4) and (5), the specific 
heat in (13)can be written with the use of(9)in the dimension- 
less form as 

r a foO,,/r e x Cv = 9nNnk • O• a (e,• _ 1)•. x • dx = 3nNAkD(O•/T) 
(14) 

where x = hco/kT. The function D(Oo/T) defined by this 
equation, frequently called the Debye (heat capacity) function, 
is tabulated in many references [e.g., Goœal, 1966]. From the 
Debye function and a knowledge of the acoustic velocities 
(which gives the Debye temperature 0o) the heat capacity as a 
function of temperature can be predicted if the vibrational 
frequencies of the solid follow a parabolic frequency distribu- 
tion. 

The low-temperature and high-temperature limits of the 
thermodynamic functions are of particular interest in geology 
and geophysics, the low-temperature limit because it strongly 
influences the entropy and the high-temperature limit because 
it applies to most subcrustal conditions. At temperatures well 
below the Debye temperature (T << 0o so that l•coo/kT >> 1) 
the upper limit in the integral D(Oo/T)can be replaced by 
infinity. The resulting integral is simply a constant (evaluated 
in several ways by Reif[ 1965, Appendix A 11 ]). At low temper- 
atures the heat capacity has the well-known form 

Cv - 12•r 4 T • - 5 nNak •-• (15) 
This equation is referred to as the 'Debye T • law.' At high 
temperatures, D(Oo/T) approaches 1, and the molar heat ca- 
pacity approaches a constant value 3nR, the Dulong-Petit 
limit. (R is the gas constant, 1.9877 cal mol-1 deg-1.) The low- 
and high-temperature limits of the thermodynamic functions 
for a Debye solid are given in Table 2. 

The Debye model can be tested by comparing any of the 
thermodynamic functions calculated from Table 2 with mea- 
sured values. This comparison is usually made by comparing 
the predicted heat capacity with the measured heat capacity 
data as described in the next section. 

Applicability of the Debye Model 

Applicability of the Debye model to real substances is gov- 
erned by the extent to which the actual lattice vibrational 
spectrum is approximated by the g(co) given by (4) and (5), 
with the assumed sharp upper cutoff frequency coo given by (9). 
Mathematical models of the vibrational modes of crystalline 
arrays of atoms [Blackman, 1955] show that for monatomic 
substances, in which there is only one atom per unit cell (which 
allows the choice n = 1 and Z = 1 in (5), (6), (9), (11), (14), 
and (15)), the vibrational spectrum is reasonably well repre- 
sented by the Debye model. The separate spectral contribu- 
tions from the P and $ vibrations cause a definite departure 
from the simple Debye spectrum at the higher frequencies; 
however, the form of the dispersion relation for the individual 
branches (P or S) departs from the linearity assumed in the 
Debye model in such a way as to tend to compensate the effect 
of the separate P and S waves [see Leibfried, 1955, p. 251]. 

A similar conclusion follows for polyatomic solids (n > 1) if 
the different atoms play nearly equivalent mechanical roles in 
the vibrational process. In general terms, the conditions for 
mechanical equivalence are that (1) the various atoms have 
nearly equal masses, (2) the coordination environments of the 
different atoms are nearly identical, (3) the environments are 
essentially isotropic, and (4) the various near-neighbor inter- 
atomic force constants are nearly equal. If these conditions 
hold, it is possible to think of the polyatomic crystal as essen- 
tially a monatomic crystal as far as the atomic vibrations are 
concerned; the 'vibrational unit' of the crystal can be taken as 
the individual atom without regard to type. 

For more complex substances the failure of one or more of 
conditions 1-4 above results in such large changes in the 
vibrational spectrum that the Debye model no longer provides 
an adequate approximation to the vibrational spectrum or to 
the heat capacity. The extent of departure from Debyelike 
behavior is shown by the widely used procedure of represent- 
ing the observed Cv at each temperature in terms of a so-called 
'calorimetric Debye temperature' 0ca•(T), which is the value of 

TABLE 2. Harmonic Expressions for the Thermodynamic Functions of a Debye Solid 

Function Low-Temperature Limit High-Temperature Limit 

E = -3nNAl• + 3nNAkTD(Ot•/T) 
Cv = 3nNAkD(Ot•/T) 
S = -3nNAk In (1 - e -øl'/r) + 4nNAkO(Ot•/T) 
F = -3nNAl• + 3nNAkTln (1 - e -øl•/r) 

- 3nNAm TD(O r•/T) 

E = -3nNAl• + (3•r4/5)nNAk(T'/Ot• a) 
Cv = (12,ra/ 5 )nN ak( T/O tO a 

S = (4•r'/5)nNak(T/Ot•) a 
F = -3nNAl•- (3,r'/5)nNAk(T4/Ot• a) 

E = - 3nNA• •t- 3nNAk T 
Cv = 3nN Ak 

S = -3nNAk in (O,/T) + 4nNAk 
F = --3nNAi• + 3nNAkT!n (Oo/T) - nNAkT 

For a Debye solid the partition function Z is given by In Z = 3kTnNAl• - 3nNa in (1 - eyøø/r] + 3nNA(T¾ODa)f•/V(X a dX)/(e x -1) = 
3kTnNAl• - 3nNA in (1 - e-øo Iv) + nNAD(OD/T). This equation contains the definition of D(OD/T), which is the derivative of the Debye func- 
tionD(OD/T) [Reif, 1965].D(OD/T)= (3Ta/ODa)•o %Iv (X • dx)/(e x- 1)and D(OD/T)= 3(Ta/ODa)•o %Iv (X' eXdx)/(e x -1) 2. 
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Fig. 2. Calorimetric Debye temperature 0ca](T) for simple, nearly 
Debyelike substances. Elastic Debye temperatures 0e] for 0øK are 
shown by circles. Values of Oca](T) were calculated from Cv from the 
following references: curves 1 and 2, Ge and Sn [Hill and Parkinson, 
1952]; curves 3, NaCI, Pb, and KCI [Blackman, 1955]; and curve 4, 
GaSh [Cetas et al., 1968]. 

0o in (14) that will reproduce the observed Cv(T). Katz [1951] 
has shown that in the low-temperature range 0 < T < 0/10, 
peaks and dips in the Oca](T) curves represent dips and peaks, 
respectively, in the low-frequency part of the vibrational spec- 
trum. The 0ca](T) curves are especially useful in showing differ- 
ences between models and data at very low temperatures 
where the magnitude of Cv is small. However, at high temper- 
atures where Cv approaches the Dulong-Petit limit, the 0c•(T) 
curves overemphasize small differences between models. For 
example, at T • 0o a 1% difference in Cv gives a difference of 
nearly 10% in O•(T) [Gopal, 1966, p. 195]. Examples of O•(T) 
for simple, rather Debyelike solids and for solids of geological 
interest are shown in Figures 2 and 3. 

Elastic Debye Temperature 

A stringent test of the Debye model lies in its quantitative 
prediction of the heat capacity in terms of the elastic proper- 
ties: 0• should be the same as 0o calculated from the sound 
velocities via (11). To make the distinction explicit, Debye 
temperatures calculated in this way from elastic data (or the 
corresponding sound velocities) are often called 'elastic Debye 
temperatures' and are here designated with the symbol 0el. 
Because the elastic constants vary somewhat with temperature, 
a temperature dependence should be considered for 0e•(T), but 
the dependence is usually slight enough to be ignored for most 
purposes [0. L. Anderson, 1963]. In calculating 0e• from (11) 
for simple compounds satisfying conditions 1-4 stated above, 
it is the practice to take nNA/V as the particle density (number 
of atoms per unit volume without regard to type), in accord- 
ance with the rationale discussed, in which the 'vibrational 
unit' of the crystal is the single atom without regard to type. 
This practice has generally been followed also in calculating 0e• 
for minerals, as in the examples cited above, even though 
conditions 1-4 generally do not hold for these substances. 

In principle, 0•a•(0) - 0el for an anisotropic solid when the 
appropriate mean sound velocity is used (equation (7)) [Born 
and Huang, 1954, p. 62]. No assumption of waves propagating 

with a velocity that is an average of vv and Vs is needed because 
at sufficiently low frequencies the separate contributions of the 
P and S waves to g(w) simply add in accordance with (7). A 
'Debyelike' T • region is predicted even for highly anisotropic 
substances at sufficiently low temperatures. 

Any elastic anisotropy requires a detailed summation of the 
contributions to g(w) for waves traveling in different direc- 
tions. There is no reason to expect that this summation would 
lead exactly to the same result as is obtained by the common 
practice of substituting into (7) or (11) values of vv and Vs 
obtained by taking Voigt-Reuss-Hill averages for elastically 
anisotropic crystals or by taking vv and Vs measured on poly- 
crystalline samples. In a few cases (e.g., rutile and calcite 
[Robie and Edwards, 1966]) where vu has been calculated it is 
found to be close to the Voigt-Reuss-Hill average and between 
the Voigt and Reuss limits. Thomsen [1972] has reviewed the 
problem of the equivalence of single-crystal and poly- 
crystalline data. In general, there are insufficient data to permit 
the required integrations in (7) to be performed for solids of 
geological interest, and the use of the VRH velocities is 
required. Because all crystals are elastically anisotropic to 
some degree, some discrepancy (although perhaps slight) may 
be expected between 0c•(0) and 0e• as conventionally calcu- 
lated from the average in (6) or as calculated from VRH or 
polycrystalline data. 

At low frequencies the shear branches contribute more sig- 
nificantly to the specific heat than the longitudinal branch. 
O. L. Anderson and R. C. Liebermann [1966] have discussed the 
relative importance of Vs and vv in the determination of 0e• and 
conclude that for materials of normal Poisson's ratio av (0.15 
< ap < 0.35), Oel can be adequately approximated from a 
knowledge of Vs and an assumed a e, because the dependence 
of 0el on vv through (re is slight. 

The 0el values marked in Figure 3 by the circles have been 
obtained for the most part from elastic or acoustic measure- 
ments at room temperature, but, as was noted above, they can 

I I I I I •200 - 

{{00 

I 800 t 
It • 02' ",,- •_........-.• o,_,v,,,,.' 

/// z 5oo Ll\ /// • •-a,'rE 
400 • '-' C•LC•TE 

•o ' 40 
T(K) 

Fig. 3. Values of 0cal(T) for representative minerals. Note the 
change in ordinate scale from Figure 2. Additional data are shown in 
Figure 4. Room temperature elastic values 0el are shown by circles at 
300øK; they are assumed to apply at low temperatures as well. Refer- 
ences to specific heat data from which the O•](T) curves were calcu- 
lated are given in the caption to Figure 4. 
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be considered appropriate over a wide temperature range, 
because the temperature variation of particle density and 
sound velocity is slight. For elements and simple compounds 
that are Debyelike in showing a nearly temperature-independ- 
ent Oca•(T) it is found that 0e• generally agrees with 0ca• to 
within 10% [Blackman, 1955]. Alers [1965] has shown that 0e• 
and 0• should be in reasonable agreement (l(0•l - 0•)/0•l 
< 0.020•1) for T < 00/50 in the case of the cubic metals, for 
T < 0,o/100 in the case of alkali halides, and for T < 0o/150 in 
the case of the hexagonal metals. The 2% latitude quoted by 
Alers [1965] in the agreement between 0•1 and 0•1 may arise 
from difficulties in obtaining accurate elastic constants, in 
extrapolating them to 0øK, and in measuring the heat capacity 
accurately to the very low temperatures required to obtain a 
reliable value of 0•1(0). 

For minerals, data are relatively sparse, but a similar agree- 
ment between 0ca•(0) and 0e• is found. Very low temperature 
heat capacity data and elastic constants are available for 
quartz, silica glass, calcite, rutile, albite, microcline, mus- 
covite, coesite, and stishovite. In all cases, 0•(0) appears to 
approach 0• within 10%. Hence the equality of 0•(0) and 0• 
appears to hold for silicates. 

Constancy of the Debye Temperature 

For those elements and alkali halides to which the Debye 
model may be expected to apply, 0•(T) should be a constant 
equal to 0o. The near constancy of O•(T) for Pb, KCI, and 
NaCI in Figure 2, particularly at the higher temperatures, is 
about as close an approach to ideal Debye behavior as is 
achieved for any real solids. The 0ca•(T) curves for Ge, gray Sn, 
and GaSb are examples of about the largest departures from 
ideal Debye behavior that are found for elements or simple 
compounds, excluding molecular solids such as Is. Most 
simple compounds show significant departures from ideal 
Debye behavior over a range of temperatures just above 0øK. 
In this range, O•(T) typically drops by a few percent to, at 
most, 25% from its value at absolute zero [Donoran and Ang- 
ress, 1971]. The curve for Ge in Figure 2 shows a relatively 
exaggerated example of this type of behavior for a simple 
solid. For most simple solids, O•(T) becomes essentially con- 
stant at the value 0• for T > 0.10o. A detailed discussion of 
these points is given by Blackman [1955]. 

The general agreement of the O•(T) curves of the simple 
substances with the predictions of the Debye model (i.e., the 
0øK value and the constancy of O•(T)) suggests that the 
parabolic representation of the vibrational spectrum is ade- 
quate for prediction of the thermodynamic properties for these 
substances which satisfy the four criteria listed earlier. In those 
cases where complete vibrational spectra of simple substances 
have been obtained (either by detailed theoretical models or by 
integration of inelastic neutron scattering data) the overall 
agreement with the Debye spectrum is good. Examples of 
spectra for halite and periclase are given in paper 2 [Kieffer, 
1979b]. 

Minerals in general show a very different behavior: a few 
examples are shown in Figure 3. The Oca•(T) curves show a 
pronounced minimum at temperatures of a few degrees Kelvin 
and, with increasing temperature, an asymptotic approach 
toward a value greatly exceeding 0•(0) or 0•. Typically, 
0•(T) drops by 20-50% from its value at absolute zero before 
rising toward the high-temperature limit. The asymptotic limit 
is usually approached at temperatures greater than 0•(0)/2, 
i.e., at temperatures much higher than those at which the 
'simple' substances begin to show a constant O•(T). The 

calorimetric behavior of the minerals may be examined some- 
what more systematically by plotting 0ca•(T), normalized to 0e•, 
as a function of temperature T. Such curves for most of the 
minerals studied in this work are shown in Figure 4. They were 
calculated from Cv data referenced in the figure caption. The 
method of correction of Cv to Cv (required for calculation of 
O•(T)) is given in paper 3. 

Consider first in Figure 4 the final high-temperature limit 
attained (0•(•o)) and the rate at which the curves rise toward 
this limit. This can be done by considering, for example, the 
temperature at which O•(T)/O• regains the value unity or by 
considering the relative slopes of the curves as they rise. Both 
the high-temperature limit and the rate of rise toward this limit 
are greatest for framework silicates, less for chain and ortho- 
silicates, and least for the aluminum oxides, corundum and 
spinel. The high-temperature limit is generally 1100ø-1200øK 
for the framework silicates, between •1000 ø and 1100 ø for the 
chain and orthosilicates, and about 950 ø for spinel and corun- 
dum. Enstatite, zircon, and sillimanite are notable exceptions, 
discussed below. 

Generalizations about calorimetric trends at low temper- 
atures in Figure 4 are much more tentative because of the 
scarcity of low-temperature calorimetric data. In general, as 
the temperature decreases from high values, the O•(T)/O• 
curves drop below unity, and the curves must therefore show a 
minimum at low temperatures, because they must regain the 
value of unity at 0øK. Two systematics appear. 

1. The depth of the minimum attained appears to be great- 
est for the framework silicates (the value of Oca•(T)/O• at the 
minimum is 0.71 for quartz, 0.67 for coesite, 0.71 for cristobal- 
ite, 0.74 for albite, and 0.76 for microcline), is probably 
smaller for the chain and sheet silicates (about 0.80-0.82 for 
muscovite, jadeite, and diopside), and least for the ortho- 
silicates (inferred to be about 0.80 for olivine and sillimanite 
and 0.90 for zircon, kyanite, and andalusite). The dip is rela- 
tively small for the oxides (0.90 for periclase, 0.87 for corun- 
dum, and 0.89 for spinel) and is comparable to the small 
values observed for simple substances (0.95 for halite). Stisho- 
vite shows a very large dip, but the data are suspect at very low 
temperatures because of the extremely small particle size (740 
,4) used in the heat capacity experiments [Holm et al., 1967]. 
Rutile also shows a very large dip in the O•(T)/O• curve, 
apparently due to an anomalously temperature-dependent op- 
tical mode, one of many anomalies observed and attributed to 
the high polarizability of the titanium ion [Traylor et al., 
1971]. Silica glass has long been known to have an excess heat 
capacity relative to that of crystalline quartz (discussed in 
paper 3), and this is apparent in the large dip in its O•(T) 
curve. An extraordinary exception to the trends noted above 
for the silicates is pyrope, for which 0•(T)/0e• drops to 0.34. 
This anomaly, which gives rise to a high entropy for pyrope 
compared to that expected by entropy-estimating schemes, 
may be associated with anomalous vibrations of loosely bound 
magnesium atoms in the pyrope structure [Kieffer, 1979a]. 

2. The second systematic trend is that the temperature at 
which the minimum is attained is generally lowest for frame- 
work silicates (Tmon = 20 ø for quartz and coesite; Tmon • 15 ø 
for cristobalite, albite, and microcline), higher for sheet and 
chain silicates (•30 ø for muscovite, perhaps 20ø-40 ø for jade- 
ite and diopside), and highest for orthosilicates (perhaps 20 ø- 
40 ø for olivine and zircon, •55 ø for kyanite, and •40ø-50 ø 
for andalusite and sillimanite). Broad minima for the oxides 
corundum and spinel occur at 60ø-70øK, and even broader 
minima occur for halite and periclase at 80•-100 ø and 100 ø, 
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respectively. For pyrope the position of its minimum, as well 
as its depth, is anomalous in comparison to that of the other 
orthosilicates. 

These departures from behavior expected from the Debye 
model imply deviations of the vibrational spectrum from the 
parabolic spectrum assumed by Debye. As was noted earlier, 
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Fig. 4. Curves of O½,•(T)/Oe• versus T for (a) low-temperature data, and (b) high-temperature data (abscissa scale 

different from that in Figure 4a). Extrapolated curves are dashed. Cp data from the sources listed below were corrected to 
Cv through Cv = Cp - TVa2B, where T, V, a, and B are the temperature, volume, thermal expansion, and bulk modulus, 
respectively. Where data were available, a and B were represented as a = a• + a2T • and B = Bo + dB/dT. High- 
tempeiature values for halite are not shown because of uncertainties introduced into the correction from Cp to Cv by lack of 
thermodynamic data (see paper 3 for discussion). High-temperature values for coesite and stishovite are not available 
because of metastability of these phases. High-temperature enstatite data may be influenced by an ortho-clino transition. 
The andalusite high-temperature data are uncertain because the thermal expansion is not known. The curves for albite and 
microcline and for jadeite and enstatite are indistinguishable at low temperature. The pyrope trend is believed to be 
anomalous for an orthosilicate for reasons discussea in paper 4 (S. W. Kieffer, manuscript in preparation, 1979). The values 
of 0= shown-were obtained by linearly extrapolating the value at 600 ø or 700øK to 1000øK with a gradient equal to that at 
500ø-700øK. This procedure was adopted because, in general, even when Cp data are available to 1000øK, the correction 
from Cp to Cv is too uncertain to give reliable estimates of 0c,](•o). (Remember that at these temperatures a 1% variation in 
Cv can give a 10% variation, or •100 ø variation, in Ocli(T).) Sources of data used are halite (HALT) [Clusius et al., 1949]; 
periclase (PERI) [Barron et al., 1959]; brucite (BRUC) [Giauque and Archibald, 1937]; corundum (CRND) [Ginnings and 
Furukawa, 1953]; quartz (QRTZ) [Lord and Morrow, 1957, quoting unpublished data of E. F. Westrum]; cristobalite 
(CRIS) [C. T. Anderson, 1936]; silica glass (GLAS) [Lord and Morrow, 1957, quoting unpublished data of E. F. Westrum; 
Flubacher et al., 1959]; coesite (COES) [Holm et al., 1967]; stishovite (STIS) [Holm et al., 1967]; rutile (RUTL) [Sandin and 
Keesorn, 1969; Pandey, 1965; Dugdale et al., 1954; Shornate, 1947; Keesorn and Pearlman, 1958]; albite (ALBT) [Openshaw, 
1974; Kelley et al., 1953]; microcline (MICR)[Openshaw, 1974; Kelley, 1960]; spinel (SPIN)[King, 1955; Bonnickson, 1955]; 
jadeite (JADE) [Kelley et al., 1953]; diopside (DIOP) [King, 1957]; enstatite (ENST) [Kelley, 1943]; olivine (OLIV) [Kelley, 
1943; Orr, 1953]; zircon (ZIRC) [Kdley, 1941]; kyanite (KYAN), andalusite (ANDL), and sillimanite (SILL) [Simon and 
Zeidler, 1926] (later data by Todd [1950] give somewhat higher curves); pyrope (PYRP), grossular (GROS), and andradite 
(ANDR) [Kiseleva et al., 1972]; and calcite (CALC) [C. T. Anderson, 1934; Stayely and Linford, 1969]. 

the dip in the 0ca](T)/0e] curve at low temperature corresponds 
to excess oscillators at low frequencies, and the rise of 0ca•(T)/ 
0e• to a high-temperature limit which exceeds the Debye tem- 
perature implies a deficiency of oscillators at frequencies near 
•oo and their presence at higher frequencies. 

Evidence supporting these inferred deviations of silicate vi- 



8 KIEFFER: THERMODYNAMICS AND LATTICE VIBRATIONS OF MINERALS, 1 

(a) (b) 

o • 
.-- Z 0 9 ••• M USC. 

O 4- • I II I I • SILL.[•] 
Others • I I I • I I I I I 

o coo w w 
Fig. 5. Schematic diagram o• the wave number o• (•) the lowest and (•) the highest optical vibrations (measured at 
= 0 by infrared, Raman, or inelastic neutron scattering data). Data on the lowest modes are taken from paper 2 and 

those on the highest modes from •oenke [1974, p. 112], L•z•reu [1972], and paper 2. 

brational spectra from the Debye model is available from 
spectroscopic measurements of lattice vibrational frequencies. 
(A detailed review of spectral data and new data on the miner- 
als of interest in this study are given in paper 2. Only a brief 
introduction is given here.) Expressed in terms of wave num- 
bers, elastic Debye 'frequencies' (w = o•t)/2•rc) of silicates 
range from about 200 cm -• to 600 cm -•. Far-infrared data 
show optical modes at wave numbers as low as 75 cm -x, and 
midinfrared and Raman data show that the vibrations extend 

to wave numbers in excess of 1000 cm -•. Because no informa- 

tion on relative density of states is available for the modes at 
low wave numbers, it cannot be proved that they are in excess 
of the Debye distribution from the optical data alone; how- 
ever, the high-frequency modes are clearly in excess of the 
Debye limit for most minerals. The positions of both the low- 
and the high-frequency modes are known to correlate with 
crystal structure (degree of polymerization of the SiO4 -4 tetra- 

hedra) in just the way required above to •explain the calorimet- 
ric behavior observed. 

Consider first the highest observed modes, in the range 900- 
1200 cm -• for silicates. It is well known that these are Si-O 

stretching modes and that the stretching modes lie at the 
highest frequencies for the framework silicates and at lower 
frequencies for the chain and orthosilicates [Launer, 1952]; the 
A1-O stretching modes are at ,•700 cm -•, at lower frequencies 
than the Si-O modes. These relations are summarized schemat- 

ically in Figure 5a. The spectroscopic trends correspond to the 
calorimetric trends, which suggests that the high-temperature 
calorimetric behavior is controlled by the Si-O or AI-O stretch- 
ing bonds. This will be demonstrated to be true in paper 3. 
Even the exceptions to the general trends of the high-temper- 
ature calorimetric behavior, notably zircon and sillimanite, are 
explicable in terms of known spectroscopic anomalies of the 
Si-O stretching bands. White [1975, p. 344] has shown that the 
main Raman-active Si-O stretching vibration in zircon is at 
anomalously high wave number (1008 cm -•) in comparison to 
that of other orthosilicates (e.g., Raman bands at 828, 860, and 
880 cm -• in olivine). Lazaret; [1972, p. 171] and others (sum- 
marized in paper 2 of this series) have shown that the Si-O 
stretching frequencies in sillimanite are exceptionally high, 
among the highest known frequencies in any silicate. The 
apparently anomalous high-temperature limit for enstatite 
may be due to an ortho-clino transition at ,•900øK [Janaft, 
1965, 1966, 1967]. 

The dip in the Oca]( T)/ O,] curve at low temperature implies 
an excess heat capacity compared to that expected from the 
Debye model of a frequency spectrum and therefore implies 

excess modes of vibration at low frequencies. Because the posi- 
tion of the dip and its magnitude are roughly correlated, one 
can state in a general way that the position of the modes is 
lowest and the number of excess modes greatest for the frame- 
work silicates and that the position is higher and the relative 
number less for the chain and orthosilicates. This corresponds 
to the systematic behavior observed in the far infrared and a 
few available Raman spectra (reported in paper 2). The corre- 
lation is shown schematically in Figure 5b. The frequency of 
the lowest optic vibrational modes at K = 0 is in the range 75- 
130 cm -• for the framework silicates, higher for the chain 
silicates (140-150 cm-X), and highest for the orthosilicates 
(140-240 cm-X). No information is available on the relative 
number of modes from spectroscopic data. 

In a general way this discussion suggests that both the low- 
temperature and the high-temperature calorimetric behaviors 
are correlated with the degree of polymerization of the SiO4 -• 
tetrahedra. The spectroscopic characteristics are also corre- 
lated with the degree of polymerization of the tetrahedra and, 
in a qualitative way, suggest that the degree of deviation from 
a Debyelike vibrational spectrum depends on crystal structure. 
Any model for mineral heat capacities should be capable of 
explaining these general relations between the thermodynamic 
behavior and the structural properties. 

3. CAUSES OF THE DEVIATIONS OF SILICATE 
HEAT CAPACITIES FROM DEBYE BEHAVIOR 

The large variation of O,:a](T) with temperature and its de- 
viation from the value of 0,• are strong evidence that for most 
minerals the specific heat is predicted by the elastic Debye 
temperature only in a range of a few degrees Kelvin above 
absolute zero. Failure to meet conditions 1-4 enumerated in 

section 2 causes departures of the lattice spectrum from the 
simple parabolic form assumed by Debye. The assumptions of 
Debye theory are violated in at least four significant ways. 

1. The assumption of a mean sound speed is not sufficient 
for minerals which show a significant degree of anisotropy 
(e.g., directional variations of more than 10% in the shear 
velocity). 

2. The assumption of a constant velocity for all waves is not 
sufficient because the lattice waves show dispersion toward the 
Brillouin zone boundaries. 

3. At low frequencies, optic vibrations in excess of the 
Debye spectrum may occur. 

4. At high frequencies, optic vibrations may occur at fre- 
quencies much greater than those predicted by acoustic mea- 
surements. 
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The relative importance of these effects depends on the 
particular mineral and on the temperature range under consid- 
eration. In this section, simple models are used to demonstrate 
how each of these effects is a possible cause of the deviation of 
the heat capacity of silicates from the Debye model. 

Acoustic Modes of Vibration 

A real crystal differs from the elastic continuum assumed by 
Debye in the existence of a periodic lattice structure. Lattice 
waves are dispersive because the phase velocity depends on the 
frequency of the lattice vibrations; typically, the dispersion is 
strongest near the Brillouin zone boundaries, i.e., at short 
wavelengths. To illustrate the effects of the Brillouin zone 
boundaries, it is instructive to consider the vibrations of a 
simple monatomic chain lattice. This problem is treated in 
most elementary solid-state books [e.g., Kittel, 1968, p. 142]. 
Consider, for simplicity, waves which are purely longitudinal 
propagating in a monatomic chain in which the atoms are 
separated by distance a (Figure 6a). Assume that Hooke's law 
is obeyed and that the force constant between two atoms 
separated from each other by j lattice constants is •j. (The •j 
will, in general, be different for longitudinal and transverse 
waves.) Then the force Fr on atom r due to the displacements 
of the atom r + j is proportional to the difference of their 
displacements, ur+• - ur: 

F• = • • (s,•+• - m) (•6) 

The equation of motion of an atom of mass m is therefore 

m-• = • •b•(#•+• - •) -oo<j< oo (17) 
Solutions to this equation have the form of a traveling wave, 

ttr = tt•(0)exp [iK(r +j)a - iwt] (18) 

where K (= 2•ry) is the wave vector and co (= 2•rv) is the 
angular frequency. 

For the special cases of central forces and nearest-neighbor 
interactions the frequencies of vibration are 

co2 = (2•1/m) (1 -- cos Ka) (19) 
or 

co - (4ek•/m)•/•'l sin (Ka/2) (20) 

The function co(K) (or ttco(K)) is called the dispersion relation, 
In contrast to the Debye model, which assumes co to be a linear 
function of K, the chain model shows that a lattice of discrete 
mass points gives rise to a periodic dependence of co on K 
(Figure 6b). Compared to a continuum model, co is lowered 
near the boundaries of the lattice Brillouin zones, K - •r/a. 

In the simplest model, in which a mean sound velocity is 
assumed, the effect of dispersion is to introduce a singularity 
into the frequency distribution at a cutoff frequency com re- 
duced from the Debye value coo (Figure 6c) 
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Fig. 6. (a) Linear monatomic chain. (b) Dispersion relation for monatomic chain (solid curve) compared to dispersion 
relation for Debye solid (dashed curve). (c) Vibrational spectrum of monatomic chain (solid curve) compared to Debye 
spectrum (dashed curve). (d) Vibrational spectrum of isotropic monatomic substance (solid curve), with separate P and S 
velocities, compared to Debye spectrum (dashed curve). (e) Vibrational spectrum of monatomic anisotropic solid (solid 
curve), with two shear velocities v• and v•, compared to Debye spectrum (dashed curve). 
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Dispersion laws for real solids are complicated functions of 

the magnitude and direction of K. However, it is a general 
requirement of the periodic lattice structure that the frequency 
be a periodic and continuous function of K, with the periodic- 
ity of the lattice Brillouin zones. In general, the frequency 
bends over from the linear relation observed as K approaches 
zero [Ziman, 1972, p. 36], and the dispersion relations ob- 
served in real solids are approximately represented by a sine 
function. Examples of measured and calculated dispersion 
curves for which this can be seen can be found as follows: SiOn., 
quartz [Elcorobe, 1967]; TiO•., rutile [Traylot et al., 1971]; 
MgO [Borgonovi and Carriveau, 1968]; CsCI, CsBr, Csl 
[Karo and Hardy, 1968]; copper [Horton and Schiff, 1956]; 
and diamond [Blanchard and Varshni, 1967]. 

Effect of Dispersion and Anisotropy 
on the Heat Capacity 

The combined effects of dispersion and anisotropy of acous- 
tic waves change the vibrational spectrum from that of a 
simple Debye model. Whereas the theoretical spectrum of an 
isotropic monatomic substance contains two acoustic 
branches, corresponding to transverse and longitudinal waves 
(Figure 6d), the theoretical spectrum of an anisotropic mort- 
atomic substance contains a third peak (Figure 6e) because the 
transverse velocities are, in general, not identical. Each of 
these waves is dispersed near the Brillouin zone boundaries. 
Therefore the combined effect of the anisotropy and dispersion 
is to introduce peaks into the frequency distribution g(co) at 
frequencies co•, co•., and co• which are different from the Debye 
frequency computed on the basis of a mean sound speed 
(Figure 6e). 

Because of anisotropy and dispersion the actual frequency 
distribution is a complicated function of frequency instead of a 
simple parabolic Debye spectrum. To represent an actual spec- 
trum empirically, it is common practice [e.g., Barron and Mor- 
rison, 1957] to expand g(o•) in powers of o•': 

g(o•) - a•.•o •' + a•o• • + a•o• • + ... (22) 

This series may be used for o• less the first singularity in g(o•). 
The equivalent Debye temperature 0o at very low temperatures 
is then given by [Bhatia and Horton, 1955] 

a. 
The first term in this expansion gives the low-temperature 
Debye behavior. Since a•. is always positive, it is clear that if a, 
is positive, 0o will decrease if the temperature is increased 
above zero. The constant a4 is positive for a mortatomic sinus- 
oidal dispersion law. If a4 is positive, excess oscillators exist at 
low frequencies in violation of the Debye spectrum, causing a 
drop in 0o with increasing temperature. If a• is negative, 0o will 
first increase as the temperature increases. A discussion of the 
sign of a• with regard to elastic constants and crystal stability 

A comparison of mineral specific heat data with calculated 
models which take into account anisotropy and dispersion 
shows that although these two effects are significant at low 
temperatures, they cannot explain the abnormally large excess 
specific heat observed at low temperatures (Figure 4). This is 
partly because, as Leibfried [1955] pointed out, in a real sub- 
stance with three acoustic branches the effects of anisotropy 
and dispersion in the acoustic branches are partially com- 
pensatory. Velocity anisotropy disperses the three spectral 
maxima associated with the shear and longitudinal velocities 
over a range of frequencies from w• < wo to w3 > wo (see 
Figure 6e). Thus the two lowest shear modes may be 'com- 
pressed' below the mean Debye frequency, whereas the longi- 
tudinal mode is 'stretched' to a frequency higher than the 
Debye frequency. The effect of dispersion, however, is to add 
the a• term in (22) and effectively reduce the co3 longitudinal 
peak back toward coo. The net effect is a spectrum that leads to 
decreases in 0ca•(T) of the order of 0.1 of 0e•, e.g., Pb in Figure 
2. A second reason that anisotropy and dispersion cannot fully 
account for the observed behavior of 0ca•(T) of minerals is that 
the acoustic branches represent only a small fraction of the 
total modes. The majority of vibrational modes of complex 
minerals are optic modes and, as is demonstrated in paper 3, it 
is the behavior of these modes that causes most of the observed 
differences from Debyelike behavior. 

Optic Modes of Vibration 

Vibrational properties common to complex lattices may be 
illustrated by considering a diatomic chain which has a basis of 
two masses mr = m• and mr+• = m•. and two force constants • 
and •. (Figure 7a). The larger mass will be designated as m•, 
and the larger force constant as •; the interatomic distance 
will be designated a, so that 2a is the lattice repeat distance. 
The range of the first Brillouin zone is -•r/2a < K < •r/2a. 
The equations of motion of the atoms may be derived by a 
procedure similar to that discussed in the previous section for 
a monatomic chain. Under the assumption of nearest-neigh- 
bor interactions only, the equations of motion are 

Particle r 

Fr = •)1(•r+1- •r) q- •)2(•r-1- #r) = m•(d•#r/dt ø') (24a) 

Particle r + 1 

Fr+l = •)l(•r- •r+l) q- •)2(•r+2- •r+l) = m•.(d•#r+•/dt •') 

(24b) 

Solutions to these equations have the form of traveling waves 
with different amplitudes (designated lh and •.) on the even (r, 
r + 2, ...)and odd (r - 1, r + 1, ...)atoms: 

Ur = •2 exp [irKa - iwt] (25a) 

Ur+l = •1 exp [i(r + 1)Ka - iwt] (25b) 

These equations have a solution only if the determinant of the 
coefficients of • and •. vanishes: 

m•co •'- • - •. 
qb• exp (-iKa) q- cko. exp (iKa) 

qb• exp (iKa) + ck•. exp (-iKa) 
rm.w •' - qb• F qb•. 

= 0 (26) 

for face-centered cubic minerals is given by Bhatia and Horton 
[1955]. The constant a•. may be calculated from elastic wave 
data, but in general, it is not possible to calculate aa for 
complex substances such as minerals. 

This determinant is called the secular determinant. 

Consider first the special case 4• = 4•. = 4•. Kittel [1968, p. 
149] has shown that for this case, two solutions exist for co •' at 
all wave vectors K. For small K, these solutions are (Figure 7b) 
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Wo ø' '• 2•K•a•'/(ml + m•.) (27a) 

Acoustic branch 

Optic branch 

In the first solution (27a) to the secular determinant, 0.) 
approaches zero linearly as K approaches zero. This behavior 
implies a constant group velocity v = dco/dK of the waves. This 
is precisely the behavior of sound waves, and hence the name 
'acoustic branch' is given to this solution. 

In the second solution (27b) to the determinant, 0.) ap- 
proaches a finite value as K approaches zero. It can be demon- 
strated that at K = 0 the atoms vibrate in antiphase about a 
fixed center of mass. If the atoms under consideration carry 
opposite charges, the electric field of light waves will excite 
these lattice vibrations. For this reason, the second type of 
solution is called an 'optic branch' or 'optic mode.' Optic 
branches will exist for all crystals in which the atoms do not 
satisfy conditions 1-4 listed previously as requirements for a 
crystal to be 'essentially monatomic.' 

Two solutions, which will be designated as co•. and cos, also 
exist at the Brillouin zone boundary, K = +•r/2a (Figure 7b). 
For equal force constants these solutions are 

coo. = (2ck/ml) •/ø' (28a) 

0.)3 = (2(klm2) x/o. (28b) 

The ratio of optic to acoustic branch frequencies at the zone 

Optic branch 

boundary is therefore (mx/mo.) •/ø'. Waves with frequencies less 
than coo. and between cos and co• are propagated by the lattice. 
Such bands of frequencies are referred to as 'passing bands' 
[Brillouin, 1953]. Waves of frequencies outside these passing 
bands are not propagated but, rather, are attenuated. Such 
intervals as the one between coo. and co• are referred to as 

'stopping bands.' As the masses rn• and mo. become identical, 
the stopping band disappears and the optic branch becomes a 
continuation of the acoustic branch. However, it is folded 
back in K space because the Brillouin zone is artificially re- 
duced by the use of a unit cell of length 2a; a zone of size a is 
appropriate to the monatomic case. 

For the general case of a lattice with different force con- 
stants and masses the determinant (26) has the solution 

2 +-- + -- -- mo. 2 m• mo. 

- 4 •6•6o. sino. Ka (29) 

These solutions are shown in Figure 8. For small K, sino. Ka -• 
Ko.ao., and (29) has the two roots 

Acoustic branch 

0.)0 2•"• ((j•l •1- •2)(ml -3- m•.)-lK•'a •' 

1 + 1__) (30b) 
At the Brillouin zone boundaries, K = +•r/2a, the branches 
approach limits determined by both the mass ratio m•/m:• and 
the force constant ratio •/4•. If 4• >> •, the two branches 
approach the limits 

(30a) 

Elcombe [1967, p. 954]. 

øJOd K w-/2a 0 K Kmax 
FiB. ?. (•) Linear aliaromic chain with two different force constants. (b) Dispersion relation for the linear aliaromic 

chain showin• acoustic and optic branches and stoppin• band. (½) Dispersion relation for a complex substance, showin• 
three acoustic branches and multiple optic branches. This sketch is from the measured dispersion relations for quartz of 
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Fig. 8. Generalized dispersion relations for a linear aliaromic 
chain with two different force constants. Numbers shown in parenthe- 
ses with the curves refer to the ratios 4)=/4)] and rn=/rn]. 

Acoustic branch 

Optic branch 

w,' -• 44), (31 a) 
(• + 0,/0,)(m, + m,) 

(3lb) 

In the case rn• = rna, then, the ratio of frequencies at the 
Brillouin zone boundary for the optic and acoustic branches is 
(•/•,)•/'. 

From the simple examples of monatomic and diatomic 
chains, several features can be recognized which hold for poly- 
atomic, three-dimensional lattices [Brillouin, 1953, p. 24; Born 
and Huang, 1954]. 

1. The frequency w is a periodic function of the wave 
vector K. 

2. If the primitive unit cell of the one-dimensional lattice 
contains n degrees of freedom, there will be n different dis- 
persion curves. By analogy, if the primitive unit cell of a three- 
dimensional lattice contains n particles, it has 3n degrees of 
freedom, and there will be 3n different waves corresponding to 
each K value (a schematic example, based on data for quartz, 
is shown in Figure 7c). 

3. Waves with frequencies in the range of the dispersion 
curves (e.g., between wo = 0 and w• and between wz and w8 for 
the diatomic case (Figure 6b)) are propagated by the lattice. 
These ranges of frequencies are called passing bands [Brillouin, 
1953, p. 25]. The number of passing bands equals the number 
of degrees of freedom in the unit cell (with possible over- 
lapping of passing bands). 

4. Frequencies outside the passing bands are not propa- 
gated through the lattice. Such frequency ranges, e.g., between 
o•,. and o•8 in Figure 6b, are called stopping bands. 

The failure of the Debye model to take into account such 
detailed spectral features of complex crystals as anisotropy, 
mass differences, and force constant differences is responsible 
in a general way for its failure when it is applied to complex 
crystals. If minerals were simple diatomic substances, it might 
be reasonable to pursue simple chain models further to obtain 
estimates of dispersion relations and vibrational spectra. How- 
ever, a description of the vibrational spectrum of a lattice 
requires detailed knowledge of local interatomic forces. Lat- 
tice dynamical models have not, in general, been successful for 
complex, polyatomic, anisotropic minerals. A complete lattice 
dynamics formulation requires knowledge of more lattice 
force constants than are generally available for minerals and 
results in an immense number of coupled differential equations 
which would be quite unreasonable to solve for most minerals 
of geological and geophysical interest. However, several re- 
sults of lattice dynamics theory are of use in the formulation of 
a simplified generalized model and these will be the basis of the 
model proposed in paper 3 of this series. 

As was mentioned previously, spectroscopic data (presented 
briefly in paper 2) demonstrate that optic vibrational modes 
occur at both very low and very high frequencies compared to 
typical Debye frequencies obtained from acoustic data. In the 
next section, simple models are developed to estimate the 
effect which these modes have on the heat capacity. 

Effect of Low-Frequency Optic Modes 
on the Heat Capacity 

The effect on Oca•(T) of a vibrational spectrum with dis- 
persion, a stopping band, and a single low-frequency or high- 
frequency optic mode can be understood by examining the 
simple models illustrated in Figure 9, in which characteristic 
dispersion and frequency distribution curves for the simple 
diatomic model discussed in the previous section are compared 
with the single curve of the Debye model (dashed curve). 
Consider first the case in which an optic mode is below the 
Debye frequency and has so little dispersion that it can be 
represented by an Einstein oscillator (Figure 9a)co• = cos < 
coo. The frequency distribution corresponding to this model is 
shown in Figure 9b. The dashed curve represents a Debye 
spectrum with the coefficient a determined by the acoustic 
velocities according to (6). The area under the Debye curve is 
3N = 3nNA, the total number of degrees of freedom of the 
vibrational oscillators in the crystal. The solid curve represent- 
ing the vibrational spectrum of the diatomic solid is comprised 
of two parts: a low-frequency acoustic distribution, modified 
by a sinusoidal dispersion relation (as in (23) and (33)), and a 
higher-frequency optic distribution. The total number of de- 
grees of freedom of the oscillators in this modified distribution 
is also equal to 3N. It is evident that owing to dispersion and to 
the low-frequency position of the optic mode, many modes of 
vibration occur in excess of the Debye spectrum at frequencies 
co less than the Debye frequency coo. At extremely low temper- 
atures, where only the acoustic branch contributes to the heat 
capacity, the specific heat is that of the pure Debye model and 
0½a• = 0o. As the temperature rises to T • ltoo,/k, the extra 
contribution from the excess oscillators due to dispersion at 
the zone boundary begins to be felt; i.e., the contribution of 
the term containing a• in (23) becomes appreciable. Similarly, 
as the temperature rises to T • ltoo•/k, the extra contribution 
to the heat capacity from the low-frequency optic branch 
becomes appreciable. The dispersion relation and the low- 
frequency optic branch both contribute excess specific heat in 
comparison to the Debye model. Hence when O•,,•(T) is eval- 
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Fig. 9. (a) Simplified dispersion relations for a diatomic solid (solid curves) compared to the Debye spectrum (dashed 
curve). The acoustic branch is periodic in K; the optic branch is flat, o• = ws, and is at a low frequency relative to Wo. (b) 
Vibrational spectrum corresponding to the dispersion relations in Figure 9a. (c) Dispersion relations for a diatomic solid 
(solid curves) compared to a Debye spectrum (dashed curve). The acoustic branch is periodic in K; the optic branch is flat, 
w• = ws, and is at high frequency relative to wo. (d) Vibrational spectra g(w) corresponding to the dispersion relations in 
Figure 9c. 

uated by replacing 0D in (14) with 0ca•(T) chosen so as to 
reproduce the actual Cv, the 0ca•(T) so determined drops below 
0e•, since Cv(OD/T) is a monotonically decreasing function of 
OD/T. 

The few low-temperature data available for glass, quartz, 
cristobalite, coesite, stishovite, rutile, calcite, and the AlaSiO• 
polymorphs show that the measured O•(T) curves decrease 
rapidly from 0e• to a minimum in the region 0.01-0.05 of 0•. 
This decrease in O•(T) could be explained by the presence of a 
single low-frequency Einstein oscillator, as discussed above, 
but such a simple model would not account for the subsequent 
rise of O•(T) above 0• at higher temperatures (see Figures 3 
and 4). This rise is due to vibrations, such as the Si-O stretch- 
ing mode, at frequencies higher than the Debye frequency. In 
the next section the effect of such modes is discussed. 

Effect of High-Frequency Optic Modes 
on the Heat Capacity 

The effect on O•(T) of a vibration spectrum with high- 
frequency optic oscillators can be understood from the simple 

model illustrated in Figures 9c and 9d. In this model the optic 
mode, assumed to be fiat, is separated from the acoustic modes 
by a substantial stopping band, so that co• = cos > COD. AS for 
the previous example the dashed curve represents a Debye 
spectrum with the coefficient a determined by the acoustic 
velocities according to (.6). The solid curve is comprised of two 
parts: some of the vibrations of the Debye spectrum have been 
shifted to a higher frequency co8 = w•, leaving the lowest- 
frequency part of the Debyelike spectrum unchanged. This has 
been done by the arbitrary procedure of cutting off the Debye- 
like spectrum sharply at a frequency lower than the original 
cutoff frequency COD for the pure Debye spectrum. The effect of 
dispersion of the acoustic branch will be ignored for the pur- 
pose of this discussion. The area under the original curve is 3N 
= 3nNA, the total number of degrees of freedom in the crystal; 
the number of oscillators retained in the Debyelike, acoustic 
portion of the modified spectrum is designated by 3N' = 3n'NA 
(and correspondingly, n' - N'/NA). The ratio n'/n is the 
fractional part of the spectrum, which is retained in the acous- 
tic branch; and from (9) it follows that 
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coo '= (n'/n)•/acoo (32) 

At low temperatures, when only the lowest-frequency oscil- 
lators contribute to the specific heat, the calorimetric behavior 
is unchanged from that of the pure Debye model, and the 
Debye temperature is 0ca• = 0o, as given by (10). As the 
temperature rises to T ,,, Oo', where Oo' is given by (10) with coo 
replaced by coo', the lack of oscillators immediately above wo' 
begins to be sensed in the thermal behavior. The specific heat 
begins to fall below what it would be if these oscillators were 
not missing. Hence O•(T) rises above 0o. 

Assume for the moment that w• lies high enough that the 
contributions of the remaining oscillators do not begin to be 
felt yet at the temperature T • 0•'. (A good rule of thumb is 
that an oscillator of wave number w = •/2•c contributes 

substantially when T, in degrees Kelvin, is numerically equal 
to w, in cm-X.) Then Cv is actually given by (14) with 0o 
replaced by 0•'. However, this does not imply that there will be 
a close relation between the 'curtailed Debye temperature' 0•' 
(which is lower than 0o) and the O•(T) that is actually found 
(which is higher than 0o): this is because in calculating Cv from 
(14) we must also replace n by n', whereas O•(T) is evaluated 
by using n. At high temperature, D(Oo/T) approaches 3R; 
hence in this intermediate temperature range where the oscilla- 
tors at w• are not yet felt, O•(T) is given by the solution of 

nD(O•(T)/T) = 3Rn' (33) 

which is 

O•(T) = TD-•(3Rn'/n) (34) 

where D-X(x) represents the inverse Debye function. Under 
the assumptions made, 0• will thus increase linearly with T 
for T • 0•', the rate of increase being greater the smaller the 
acoustic spectral fraction n'/n. (For n'/n = •, D-•(3Rn'/n) = 
4.25.) 

At a high temperature T • •wx/k the contribution from the 
oscillators at w• stabilizes the rise in 0•,•(T) at a level 0•,• • 0•. 
To determine the actual asymptotic value 0•,•(•) reached, the 
high-temperature asymptotic forms of the Debye and Einstein 
functions are utilized: 

D(•)= 3R[,- •(•)•+ '"• (35) 
0• = + 

Applying the definition of O•,•(T) given previously, we have 

0• nD(O•) n'D•Oo' ) + (n-n')E(•) (37) = 

In the high temperature limit this becomes 

3Rn 1 =3Rn' 1- •)•3 

which gives, with the help of 0•' = (n'/n)x/•O, 

0•(•) = (n'/n) •/• Oo • + •[1 - (n'/n)] O• • (39) 

This equation was derived for the restricted case n'/n = • by 
Lord [1941] in calculations of the contribution of translational 
and rotational modes of molecular lattices to the specific heat. 
Equation (39) allows us to see how the limiting 0•,•(•) de- 

pends on the oscillator partitioning fraction n'/n and on 0s. It 
can be shown that if 0s > 0o and 0 < n'/n • 1, 

0o < 0ca,(oo) < ({i)•/:0s (40) 

In principle, molecular crystals should provide the most 
striking examples of this model, but in practice, cos is so much 
greater than coo' that these crystals usually melt or dissociate 
before the contributions of the intramolecular vibrations at cos 
to Cv become appreciable. For such crystals it is obvious that 
the vibrational unit for the acoustic vibrations should be cho- 
sen as the whole molecule rather than the individual atom. In 

spite of the fact that the molecule is polyatomic, one would 
take both n = 1 and n' = 1, and one would then expect to find 
the O•(T) calculated on this basis to be approximately con- 
stant if the intermolecular (translational and librational) vi- 
brations follow a Debyelike spectrum. Lord [1941] discussed 
the likely intermolecular spectrum of molecular crystals, and 
the reader is referred there for detailed discussion. 

A model such as the one discussed here might be applied to 
silicates with the assumption that the Si-O stretching vibra- 
tions can be represented as an Einstein oscillator. With this 
assumption, n'/n "' 0.8 (paper 2), 0o -• 600 ø, and Os '" 1500 ø 
(corresponding to an Einstein oscillator at 1050 cm-X). Equa- 
tion (39) then gives 0•(oo) ,,, 1000 ø and 0o' '" 0.93 X 0o '-' 
550 ø (corresponding to a truncation of the Debye spectrum at 
wo' = 375 cm-•). Measured 0•(oo) values for silicates are in 
fact between 1200øK (for some framework silicates) and 950 ø 
(for orthosilicates) (see Figures 3 and 4). The 0•(oo) values for 
spinel, rutile, and stishovite, also shown in these figures, are 
lower than those for the SiO4 -4 silicates, reflecting vibrational 
bands in the region 700-800, 400-800, and 800-900 cm -x, 
respectively. 

The agreement between calculated and observed high-tem- 
perature limits suggests that the addition of a high-frequency 
Einstein oscillator to represent the Si-O tetrahedral stretching 
vibrations (or, in a few cases, A1-O, Si-O, or Ti-O octahedral 
vibrations) might be a reasonable approximation to the true 
vibrational spectrum at high frequencies. However, attempts 
which have been made to represent optic modes of silicates by 
a simple model with a single weighted Einstein function sup- 
plementing a truncated Debye distribution were of limited 
success [Blackman, 1955]. This is simply because a model with 
a Debye spectrum supplemented by a single Einstein function 
cannot account for both the decrease in 0ca•(T) at low temper- 
atures and the subsequent rise in 0•(T) at high temperatures. 
A more realistic estimate of the distribution of oscillators in 

the wave number range 100-1200 cm -• must be made in order 
to calculate the thermodynamic functions; this estimate is the 
subject of paper 3. 

4. SUMMARY 

The measured heat capacities of minerals show strong devia- 
tions from Debyelike calorimetric behavior at all temperatures 
above a few degrees Kelvin. The deviations vary systematically 
with crystal structure. The Debye model does not account for 
the measured calorimetric properties of minerals because it 
does not allow for anisotropy of elastic parameters, dispersion 
of lattice waves at Brillouin zone boundaries, and low and high 
frequency modes arising from optic vibrations. In paper 2 of 
this series, characteristics of optic vibrations of minerals as 
known from infrared, Raman, and neutron scattering data are 
discussed. In paper 3 a simple model based on generalized 
vibrational characteristics is developed to replace the Debye 
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model for calculations of thermodynamic properties of miner- 
als. 

APPENDIX: SCHEME FOR ESTIMATING DIRECTIONALLY 

AVERAGED SHEAR AND LONGITUDINAL VELOCITIES 

Because there are few data on directionally averaged wave 
velocities for minerals, it is necessary to estimate these veloci- 
ties (which will be used in the model in paper 3). Denote by u• 
the directional average 

u, -- • v,3(O, 4• (A1) 
where i = 1 and i = 2 apply to the directionally averaged slow 
and fast shear velocities, respectively, and i = 3 applies to the 
directionally averaged longitudinal velocity. I assume that 

u3 = Vva•,•, (A2) 

Robie and Edwards [1966] have shown that this is a good 
assumption in the cases of futile and calcite. 

It is much more difficult to specify two characteristic shear 
velocities because the only data commonly available for miner- 
als are single VRH shear velocities vva..s. In order to make 
use of these data, I assume that 

1 1 2 

•t? + -- = (A3) U2 a DVR H,S $ 

and further assume that the u• and u: which satisfy this relation 

are representative of spatially averaged slow and fast shear 
velocities. Equations (A2) and (A3) assure that 0e• calculated 
by (7) and (l l) is approximately equal to the value obtained 
from polycrystalline elastic constants. However, since infinite 
combinations of u• and u: could satisfy (A3), either u• or u: 
must be separately specified. I assume that either the slow or 
the fast shear wave velocity can be estimated if single-crystal 
acoustic velocity measurements in high-symmetry directions 
have been published for the mineral under consideration. 
Measurements in high-symmetry directions give minimum and 
maximum shear wave velocities [e.g., Robie and Edwards, 
1966]. It would be convenient if these measured minimum and 
maximum values could be used as representative averages u• 
and u:; however, the velocities in high-symmetry directions are 
generally maxima or minima of a smoothly varying directional 
velocity function and are thus not representative of an aver- 
aged value but rather of extrema [e.g., Robie and Edwards, 
1966]. It can be demonstrated that they do not represent 
directionally averaged values by the following argument: The 
requirement that u: be finite places a restriction on u• through 
(A3): 

u• > Vva.,s/2 •/• >• 0.8Vva.,s (A4) 

The experimental data show, however, that the minimum 
shear velocity measured in a high-symmetry direction may be 
considerably less than 0.8VvaH,s. Therefore it must be smaller 
than the directionally averaged minimum value. For example, 

TABLE A1. Directionally Averaged Velocities From Single-Crystal Maximum and Minimum Velocities and VRH Velocities 

From (A5) From (A7) From (A8) From (A9) 
and (A6) and (A6) and (A6) and (A6) 

/)VRH,P /)VRH,S /)mln,S Omax,S 
Mineral (1) (2) (3) (4) u• u: u• u: u• u: u• u•. References 

Halite 4.56 2.61 2.43 2.91 2.50 2.74 2.52 2.71 2.52 2.70 2.49 

Periclase 9.71 6.05 5.31 6.60 5.83 6.30 5.62 6.62 5.68 6.53 5.80 

Quartz 6.02 4.05 3.30 5.11 3.76 4.46 3.60 4.88 3.68 4.65 3.70 

Coesite 8.19 4.59 8.54 (6.60) 4.17 5.24 3.93 6.17 4.06 5.56 4.05 

Rutile 9.26 5.14 3.31 6.76 4.73 5.73 4.22 8.78 4.64 

Microcline 6.02 3.34 2.14 4.96 3.02 3.85 2.74 5.81 2.93 

Albite (9% 6.06 3.33 2.56 5.45 2.98 3.91 2.84 4.52 2.95 4.05 2.87 
An) 

Spinel 9.82 5.62 4.19 6.54 5.31 6.00 4.70 8.44 4.90 7.09 5.26 

Diopside 7.70 4.38 3.94 4.83 4.21 4.58 4.13 4.69 4.16 4.65 4.19 

Enstatite 7.85 4.76 4.27 4.99 4.69 4.86 3.60 4.88 3.68 4.65 3.70 
Forsterite 8.56 4.93 4.42 5.00 4.90 4.96 4.64 5.29 4.68 5.24 4.89 

Zircon 8.06 3.97 2.94 4.87 3.71 4.33 3.30 6.14 3.46 5.05 3.66 

Calcite 6.53 3.23 2.59 4.71 2.93 3.70 2.84 3.98 2.91 3.76 2.84 

Corundum 10.85 6.35 5.75 6.91 6.12 6.59 6.01 6.75 6.05 6.70 6.10 

2.76 1, 2, SW 11844; 3, 4, cal- 
culated from elastic 

constants, SW 11844 
6.34 1, 2, SW 10928; 3, 4, 

Spetzler [ 1970] 
4.58 1, 2, SW 62894; 3, 4, 

McSkimmin et al. 

[19651 
5.60 1-4, Weidner and 

Carleton [ 1977] 
5.95 1, 2, SW 22229; 3, 4, 

Manghnani [ 1969] 
4.15 l, 2, SW 42404; 3, 4, 

A lexandrov and 

Ryzhova [1962] 
4.39 1, 2, SW 42406; 3, 4, 

Ryzhova [ 1964] 
6.08 1,2, SWl1876;3,4, 

Lewis [ 1966] 
4.61 1, 2, SW 42397; 3, 4, 

/tlexandrov et al. 
[19641 

4.58 1-4, Kumazawa, [1969] 
4.97 1-4, Verma [1960] 

(Voigt average) 
4.42 1, 2, SW 22252; 3, 4, 

Ryzhova et al., [1966] 
3.97 1, 2, SW 62845; 3, 4, 

Pesselnick and Robie 

[1963] 
6.63 1, 2, SW 62813; 3, 4, 

Bernstein [ 1963] 

All velocities are in kilometers per second. Values of ux and u: from (A5) and (A6) are used in the model of paper 3. Blank entries indicate 
that ux < 0.8 Wall. S; therefore u: cannot be calculated because (A7) and (A6) do not have a solution. SW means Simmons and Wang [1971]; 
code numbers are given. 
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for microcline, Vva,,s = 3.34 km/s (0.8Vvm•,s = 2.67 km/s), 
but the minimum measured shear velocity is only 2.14 km/s 
[Alexandrov and Ryzhova, 1962]. Thus velocities measured in 
high-symmetry directions are not suitable choices for u• and us 
because (A4) is violated and, in general, (A3) would not be 
satisfied. 

Many schemes to estimate u• and us could be devised; four 
which represent extreme cases are discussed here. Consider 
first the case where the maximum and minimum shear wave 

velocities Vmax,S and Vmin,s are known in high-symmetry direc- 
tions. The velocity us can be estimated by requiring 

2 1 1 

u:S Vva.,ss + s (A5) Umax,$ 

Then ux follows from the requirement that 

1 1 2 
} = (A6) 

Ul 3 U2 3 /)VRH,S 3 

Alternatively, ux could first bc determined by requiring that 

2 1 1 
-- - + (A7) 
Ul 3 /)VRH,S 3 /)mln,S 3 

with us following from the requirement of (A6). 
A third possibility is a linear averaging scheme 

Ux : (Omln 4- OVRH,$)/2 (A8) 

with us determined from (A5) or, correspondingly, 

u: = (Vmax + VVR..S)/2 (A9) 

with ux determined from (A5). 
Velocities ux and ua from these four averaging schemes are 

shown in Table A1. Because the velocity ux is constrained 
through (A4) to values between VvRH,S/2 •/s and VvR.,s, its 
value is not highly dependent on the averaging scheme used, 
and variations in u• are generally less than 10%. Note, how- 
ever, that for highly anisotropic minerals the averaging scheme 
represented by (A7) and (A6) leads to a solution for ux which 
violates (A4) and therefore cannot be used. Somewhat larger 
variations may be obtained for the value of us because it is 
unconstrained and, mathematically, could become very large 
as ux approaches UVRVi,S/2 •/s. The values given by (A5) and 
(A6) are used in the model of paper 3. The uncertainty in- 
troduced into Cv calculations from the lack of a rigorous 
averaging procedure for ux is generally small and apparent 
only at very low (a few degrees) temperatures because the 
acoustic modes comprise a relatively small fraction of the total 
modes. 

For those materials for which single-crystal velocities have 
not been measured but for which polycrystalline VRH aver- 
ages are available I have estimated ux by assuming that the 
ratio ux/vvm•,s is the same as that for structurally similar 
materials, e.g., for stishovite using rutile; for coesite using 
quartz (or microcline); and for orthosilicates kyanite and an- 
dalusite using olivine and zircon. The velocity us is then calcu- 
lated from (A6). 

According to these choices, 0e• is given by (7) and (11) as 

Oo=_•(18•rsnNA)l/S(1 1 1 ) -1/s ' ZV • + -- + (A10) U2 s •a a 

NOTATION 

Equation numbers given refer to the first use of the symbol 
in an equation or to the equations nearest its first occurrence in 
text. 

ax, aa, as basic vectors o! the primitive lattice, 
(1). 

a interatomic distance, (18). 
a coefficient of the Debye distribution 

function g(w), (4) and (5). 
a,, as coefficients of Debyelike spectrum 

with separate longitudinal (?) and 
shear (S) branches, between (5) and 
t6. 
coefficients in the expansion ofg(w) in 
powers of w s, (23). 

A general amplitude coefficient, between 
(2) and (3). 

b•, bs, bs reciprocal basis vectors, (1). 
c speed of light. 

Cv molar heat capacity, (13) and Table 1. 
Cv E heat capacity of an Einstein oscillator 

(same as E(ltw/kT)), (12). 
d density of wave vectors in reciprocal 

space, before (4). 
Debye heat capacity function, (14). 
derivative of the Debye function, 
Table 2. 

f(K) density of vibrational states in recip- 
rocal space, before (4). 

E internal energy (molar), Table 1. 
8(ltw/kT) Einstein heat capacity function, (12b). 

F Helmholtz free energy (molar), Table 
1. 

force on atom r, (16). 
frequency distribution function, (4). 
Planck constant, equal to 6.625 X 
10 -s? ergs s. 

// Planck constant divided by 2•-. 
k Boltzmann constant, equal to 1.380 X 

10- •6 ergs deg- •. 
K(r/) wave vector, (2). 
Kmax maximum wave vector (Brillouin zone 

boundary), (8). 
m, mt particle mass, (17). 

N Number of ato•ns (oscillators) in the 
crystal, equal to nNa, between (5) and 
(6). 

N' number of oscillators in a truncated 

Debye spectrum, (32). 
Na Avogadro's number, equal to 6.023 X 

10 •s mol -•, between (5) and (6). 
n number of atoms in the chemical for- 

mula on which the molar volume is 

defined, between (5) and (6). 
n' fractional number of formula unit os- 

cillators in a truncated or modified 

Debye spectrum, equal to N'/Na, 
(32). 

n'/n acoustic spectral fraction. 
• unit direction vector, between (2) and 

(3). 
R gas constant per mole, equal to 1.988 

cal mol -x deg -x. 
S entropy (molar), Table 1. 
t time, between (2) and (3). 
T temperature, degrees Kelvin unless 

otherwise indicated. 

u•,s,s directionally averaged acoustic veloc- 
ity (A1). 

a2, a4, a6, ß ß ß 

D(lkoo/k T), D(Oo/T) 
D(Oo/T) 

g(K), g(w) 
h, 
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v(O, •) 
Um 

Up 

/)VRH,P 

/)VRH,S 

v 

Y(n), Y 

z 

OD 

O½•,(T) 

o•,(o) 
0•,( o• ) 

0,• 
p(x, t) 

1 

COD 

COD • 

acoustic velocity, (3). 
mean sound speed, (7). 
acoustic longitudinal wave velocity, 
(6). 

os acoustic shear wave velocity, (6). 
v• acoustic velocity of the lowest shear 

branch, (6). 
v: acoustic velocity of the highest shear 

branch, (6). 
o8 acoustic velocity of the longitudinal 

branch, (6). 
Voigt-Reuss-Hill acoustic velocity for 
longitudinal branch, (7). 
Voigt-Reuss-Hill acoustic velocity for 
shear branch, (7). 
molar volume, between (5) and (6). 
volume of primitive unit cell, (2). 
volume of unit cell of reciprocal lat- 
tice (Brillouin zone), (2). 

w wave number, equal to co/2•-c cm -•, 
before (16). 

x general displacement vector, between 
(2) and (3). 

x dimensionless frequency, equal to//co/ 
•r, (•4). 
reciprocal lattice vector, equal to K/ 
2;r, (3). 
partition function Table 1. 
atomic potential energy, Table 1 only. 
phase factor, between (2) and (3). 
coefficients of scalar components of 
wave vector, (2). 
Debye temperature, (10). 
curtailed Debye temperature of trun- 
cated Debye spectrum, after (32). 

0e Einstein temperature, (36). 
0e• elastic Debye temperature, between 

(15) and (16). 
calorimetric Debye temperature, be- 
tween (15) and (16). 
low-temperature limit of 0ca•(T). 
high-temperature limit of Oc,,•(T). 
direction angles, (A 1). 
displacement of a point at x in the 
crystal as a function of time t, be- 
tween (2) and (3). 

•/• amplitude of motion of heavy parti- 
cles, (25b). 

•/: amplitude of motion of light particles, 
(25a). 

•r constant, equal to 3.14159. 
av Poisson's ratio, between (15) and 

(16). 
•j force constant between two atoms 

(on one-dimensional chain)separated 
from each other byj lattice constants, 
(16). 
nearest-neighbor force constant, (19). 
force constants in a diatomic chain, 
(24a). 

co angular frequency, radians per sec- 
ond, (3). 
Debye cutoff frequency, (9). 
cutoff frequency of truncated Debye 
spectrum, (32). 

(.R E 

COm 

Einstein frequency, after (40). 
maximum lattice frequency of a lat- 
tice of discrete points, (21). 

COo frequency of vibration of diatomic 
chain at Brillouin zone center, acous- 
tic branch, (2/a). 

co• frequency of vibration of diatomic 
chain at Brillouin zone center, optic 
branch, (27b). 

CO: frequency of vibration of diatomic 
chain at Brillouin zone boundary, 
acoustic branch, (28a). 

0)8 frequency of vibration of diatomic 
chain at Brillouin zone boundary, op- 
tic branch, (28b). 

ft solid angle, (7). 
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